-
Arakawa, A., and V. R. Lamb, Computational design of the basic dynamical
processes of the UCLA General Circulation Model, Meth.
Comput. Phys., pp. 173-263, 1977.
-
-
Backhaus, J. O., A three-dimensional model for the simulation of shelf sea
dynamics, Dt. Hydrogr. Z., 38, 165-187, 1985.
-
-
Baretta, J. W., W. Ebenhöh, and P. Ruardij, The European Regional Seas
Ecosystem Model, a complex marine ecosystem model, Neth. J. Sea
Res., 33, 233-246, 1995.
-
-
Baumert, H., and G. Radach, Hysteresis of turbulent kinetic energy in
nonrotational tidal flows: A model study, J. Geophys. Res.,
97, 3669-3677, 1992.
-
-
Beckers, J.-M., and E. Deleersnijder, Stability of a FBTCS scheme applied to
the propagation of shallow-water inertia-gravity waves on various space
grids, J. Computat. Phys., 108, 95-104, 1993.
-
-
Beckers, J.-M., H. Burchard, J.-M. Campin, E. Deleersnijder, and P.-P. Mathieu,
Another reason why simple discretizations of rotated diffusion operators
cause problems in ocean models. Comments on the paper isoneutral
diffusion in a z-coordinate ocean model by Griffies et al., J.
Phys. Oceanogr., 28, 1552-1559, 1998.
-
-
Beckers, J.-M., H. Burchard, E. Deleersnijder, and P.-P. Mathieu, On the
numerical discretisation of rotated diffusion operators in ocean models,
Monthly Weather Review, 128, 2711-2733, 2000.
-
-
Blumberg, A. F., and G. L. Mellor, A description of a coastal ocean circulation
model, in Three dimensional ocean models, edited by N. S. Heaps, pp.
1-16, American Geophysical Union, Washington, D.C., 1987.
-
-
Bryan, K., A numerical model for the study of the world ocean, J.
Computat. Phys., 4, 347-376, 1969.
-
-
Burchard, H., Turbulenzmodellierung mit Anwendungen auf thermische
Deckschichten im Meer und Strömungen in Wattengebieten,
Ph.D. thesis, Institut für Meereskunde, Universität Hamburg, published
as: Report 95/E/30, GKSS Research Centre, 1995.
-
-
Burchard, H., Presentation of a new numerical model for turbulent flow in
estuaries, in Hydroinformatics '98, edited by V. Babovic and L. C.
Larsen, pp. 41-48, Balkema, Rotterdam, Proceedings of the third
International Conference on Hydroinformatics, Copenhagen, Denmark, 24-26
August 1998, 1998.
-
-
Burchard, H., Energy-conserving discretisation of turbulent shear and buoyancy
production, Ocean Modelling, 4, 347-361,
2002a.
-
-
Burchard, H., Applied turbulence modelling in marine waters,
Lecture Notes in Earth Sciences, vol. 100, 215 pp. pp., Springer,
Berlin, Heidelberg, New York, 2002b.
-
-
Burchard, H., Quantification of numerically induced mixing and dissipation in
discretisations of shallow water equations, International Journal on
Geomathematics, submitted, 2012.
-
-
Burchard, H., and H. Baumert, On the performance of a mixed-layer model based
on the
-
turbulence closure, J. Geophys. Res.,
100, 8523-8540, 1995.
-
-
Burchard, H., and J.-M. Beckers, Non-uniform adaptive vertical grids in
one-dimensional numerical ocean models, Ocean Modelling, 6,
51-81, 2004.
-
-
Burchard, H., and K. Bolding, GETM - a general estuarine transport model.
Scientific documentation, Tech. Rep. EUR 20253 EN, European
Commission, 2002.
-
-
Burchard, H., and O. Petersen, Hybridisation between
and
coordinates for improving the internal pressure gradient calculation in
marine models with steep bottom slopes, Int. J. Numer. Meth. Fluids,
25, 1003-1023, 1997.
-
-
Burchard, H., and H. Rennau, Comparative quantification of physically and
numerically induced mixing in ocean models, Ocean Modelling,
20, 293-311, 2008.
-
-
Burchard, H., K. Bolding, and M. R. Villarreal, Three-dimensional modelling of
estuarine turbidity maxima in a tidal estuary, Ocean Dynamics,
54, 250-265, 2004.
-
-
Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf,
Description of a flexible and extendable physical-biogeochemical model system
for the water column, J. Mar. Sys., 61, 180-211, 2006.
-
-
Casulli, V., and E. Cattani, Stability, accuracy and efficiency of a
semi-implicit method for three-dimensional shallow water flow,
Computers Math. Appl., 27, 99-112, 1994.
-
-
Chu, P. C., and C. Fan, Hydrostatic correction for reducing horizontal pressure
gradient errors in sigma coordinate models, J. Geophys. Res.,
108, 3206, doi: 10.1029/2002JC001,668, 2003.
-
-
Cox, M. D., A primitive equation, 3-dimensional model for the ocean,
Tech. Rep. 1, Geophysical Fluid Dynamics Laboratory, University of
Princeton, Princeton, N. J., 75 pp., 1984.
-
-
de Kok, J. M., A 3D finite difference model for the computation of near- and
far-field transport of suspended matter near a river mouth, Cont.
Shelf Res., 12, 625-642, 1992.
-
-
Deleersnijder, E., and K. G. Ruddick, A generalized vertical coordinate for
3D marine problems, Bulletin de la Société Royale des Sciences
de Liège, 61, 489-502, 1992.
-
-
Duwe, K., Modellierung der Brackwasserdynamik eines Tideästuars am
Beispiel der Unterelbe, Ph.D. thesis, Universität Hamburg, published
in: Hydromod Publ. No. 1, Wedel, Hamburg, 1988.
-
-
Espelid, T. O., J. Berntsen, and K. Barthel, Conservation of energy for schemes
applied to the propagation of shallow-water inertia-gravity waves in regions
with varying depth, Int. J. Numer. Meth. Engng, 49,
1521-1545, 2000.
-
-
Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, Bulk
parameterization of air-sea fluxes for Tropical Ocean-Global
Atmosphere Coupled-Ocean Atmosphere Response Experiment,
J. Geophys. Res., 101, 3747-3764, 1996.
-
-
Fofonoff, N. P., and R. C. Millard, Algorithms for the computation of
fundamental properties of seawater, Unesco technical papers in marine
sciences, 44, 1-53, 1983.
-
-
Freeman, N. G., A. M. Hale, and M. B. Danard, A modified sigma equations'
approach to the numerical modeling of Great Lakes hydrodynamics,
J. Geophys. Res., 77, 1050-1060, 1972.
-
-
Gerdes, R., A primitive equation ocean circulation model using a general
vertical coordinate transformation. 1. Description and testing of the
model, J. Geophys. Res., 98, 14,683-14,701, 1993.
-
-
Haidvogel, D. B., and A. Beckmann, Numerical Ocean Circulation
Modelling, Series on Environmental Science and Management, vol. 2,
318 pp. pp., Imperial College Press, London, 1999.
-
-
Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies,
Updated algorithms for density, potential temperature, conservative
temperature and freezing temperature of seawater, Journal of
Atmospheric and Oceanic Technology, submitted, 2005.
-
-
Jerlov, N. G., Optical oceanography, Elsevier, 1968.
-
-
Kagan, B. A., Ocean-atmosphere interaction and climate modelling,
Cambridge University Press, Cambridge, 1995.
-
-
Kantha, L. H., and C. A. Clayson, Small-scale processes in geophysical
fluid flows, International Geophysics Series, vol. 67, Academic
Press, 2000a.
-
-
Kantha, L. H., and C. A. Clayson, Numerical models of oceans and
oceanic processes, International Geophysics Series, vol. 66,
Academic Press, 2000b.
-
-
Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions,
Bound. Layer Meteor., 9, 91-112, 1975.
-
-
Krone, R. B., Flume studies of the transport of sediment in estuarial shoaling
processes, Tech. rep., Hydraulic Eng. Lab. US Army Corps of Eng.,
1962.
-
-
Lander, J. W. M., P. A. Blokland, and J. M. de Kok, The three-dimensional
shallow water model TRIWAQ with a flexible vertical grid definition,
Tech. Rep. RIKZ/OS-96.104x, SIMONA report 96-01, National Institute
for Coastal and Marine Management / RIKZ, The Hague, The Netherlands, 1994.
-
-
Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing : a
review and a model with nonlocal boundary layer parameterisation,
Rev. Geophys., 32, 363-403, 1994.
-
-
Leonard, B. P., The ULTIMATE conservative difference scheme applied to
unsteady one-dimensional advection, Comput. Meth. Appl. Mech. Eng.,
88, 17-74, 1991.
-
-
Leonard, B. P., M. K. MacVean, and A. P. Lock, The flux integral method for
multidimensional convection and diffusion, App. Math. Modelling,
19, 333-342, 1995.
-
-
Madala, R. V., and S. A. Piacsek, A semi-implicit numerical model for
baroclinic oceans, J. Computat. Phys., 23, 167-178, 1977.
-
-
Martinsen, E. A., and H. Engedahl, Implementation and testing of a lateral
boundary scheme as an open boundary condition in a barotropic ocean model,
Coastal Engineering, 11, 603-627, 1987.
-
-
Mathieu, P.-P., E. Deleersnijder, B. Cushman-Roisin, J.-M. Beckers, and
K. Bolding, The role of topography in small well-mixed bays, with application
to the lagoon of Mururoa, Cont. Shelf Res., 22,
1379-1395, 2002.
-
-
Mellor, G. L., T. Ezer, and L.-Y. Oey, The pressure gradient conundrum of sigma
coordinate ocean models, Journal of Atmospheric and Oceanic
Technology, 11, 1126-1134, 1994.
-
-
Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
New York, 1980.
-
-
Paulson, C. A., and J. J. Simpson, Irradiance measurements in the upper ocean,
J. Phys. Oceanogr., 7, 952-956, 1977.
-
-
Pedlosky, J., Geophysical fluid mechanics, 2. ed., Springer, New York,
1987.
-
-
Phillips, N. A., A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-185, 1957.
-
-
Roe, P. L., Some contributions to the modeling of discontinuous flows,
Lect. Notes Appl. Math., 22, 163-193, 1985.
-
-
Shchepetkin, A. F., and J. C. McWilliams, A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res., 108, 10.1029/2001JC001,047,
2003.
-
-
Song, Y., A general pressure gradient formulation for ocean models. Part I:
Scheme design and diagnostic analysis, Monthly Weather Review,
126, 3213-3230, 1998.
-
-
Song, Y., and D. B. Haidvogel, A semi-implicit ocean circulation model using a
generalised topography-following coordinate, J. Computat. Phys.,
115, 228-244, 1994.
-
-
Stelling, G. S., and J. A. T. M. van Kester, On the approximation of horizontal
gradients in sigma co-ordinates for bathymetry with steep bottom slopes,
Int. J. Numer. Meth. Fluids, 18, 915-935, 1994.
-
-
Umlauf, L., H. Burchard, and K. Bolding, General Ocean Turbulence Model.
Source code documentation, Tech. Rep. 63, Baltic Sea Research
Institute Warnemünde, Warnemünde, Germany, 2005.
-
-
van Leer, B., Toward the ultimate conservative difference scheme. V: A second
order sequel to Godunov's method, J. Computat. Phys., 32,
101-136, 1979.
-
-
Zalezak, S. T., Fully multidimensional flux-corrected transport algorithms for
fluids, J. Computat. Phys., 31, 335-362, 1979.
-
-
Zalezak, S. T., A preliminary comparison of modern shock-capturing schemes:
linear advection, in Advances in computer methods for partial
differential equations, edited by R. V. aand R. S. Stepleman, pp. 15-22,
Publ. IMACS, 1987.
-
-
Zanke, U., Berechnung der Sinkgeschwindigkeiten von Sedimenten,
Mitteilungen des Franzius-Institutes, 46, 231-245, 1977.
-
kklingbe
2017-10-02