-
Arakawa, A., and V. R. Lamb, Computational design of the basic dynamical
processes of the UCLA General Circulation Model, Meth.
Comput. Phys., pp. 173–263, 1977.
-
-
Backhaus, J. O., A three-dimensional model for the simulation of shelf sea
dynamics, Dt. Hydrogr. Z., 38, 165–187, 1985.
-
-
Baretta, J. W., W. Ebenhöh, and P. Ruardij, The European Regional Seas
Ecosystem Model, a complex marine ecosystem model, Neth. J. Sea
Res., 33, 233–246, 1995.
-
-
Baumert, H., and G. Radach, Hysteresis of turbulent kinetic energy in
nonrotational tidal flows: A model study, J. Geophys. Res.,
97, 3669–3677, 1992.
-
-
Beckers, J.-M., and E. Deleersnijder, Stability of a FBTCS scheme applied to
the propagation of shallow-water inertia-gravity waves on various space
grids, J. Computat. Phys., 108, 95–104, 1993.
-
-
Beckers, J.-M., H. Burchard, J.-M. Campin, E. Deleersnijder, and P.-P. Mathieu,
Another reason why simple discretizations of rotated diffusion operators
cause problems in ocean models. Comments on the paper isoneutral
diffusion in a z-coordinate ocean model by Griffies et al., J.
Phys. Oceanogr., 28, 1552–1559, 1998.
-
-
Beckers, J.-M., H. Burchard, E. Deleersnijder, and P.-P. Mathieu, On the
numerical discretisation of rotated diffusion operators in ocean models,
Monthly Weather Review, 128, 2711–2733, 2000.
-
-
Blumberg, A. F., and G. L. Mellor, A description of a coastal ocean circulation
model, in Three dimensional ocean models, edited by N. S. Heaps, pp.
1–16, American Geophysical Union, Washington, D.C., 1987.
-
-
Bryan, K., A numerical model for the study of the world ocean, J.
Computat. Phys., 4, 347–376, 1969.
-
-
Burchard, H., Turbulenzmodellierung mit Anwendungen auf thermische
Deckschichten im Meer und Strömungen in Wattengebieten,
Ph.D. thesis, Institut für Meereskunde, Universität Hamburg, published
as: Report 95/E/30, GKSS Research Centre, 1995.
-
-
Burchard, H., Presentation of a new numerical model for turbulent flow in
estuaries, in Hydroinformatics '98, edited by V. Babovic and L. C.
Larsen, pp. 41–48, Balkema, Rotterdam, Proceedings of the third
International Conference on Hydroinformatics, Copenhagen, Denmark, 24-26
August 1998, 1998.
-
-
Burchard, H., Energy-conserving discretisation of turbulent shear and buoyancy
production, Ocean Modelling, 4, 347–361,
2002a.
-
-
Burchard, H., Applied turbulence modelling in marine waters,
Lecture Notes in Earth Sciences, vol. 100, 215 pp. pp., Springer,
Berlin, Heidelberg, New York, 2002b.
-
-
Burchard, H., Quantification of numerically induced mixing and dissipation in
discretisations of shallow water equations, International Journal on
Geomathematics, submitted, 2012.
-
-
Burchard, H., and H. Baumert, On the performance of a mixed-layer model based
on the -
turbulence closure, J. Geophys. Res.,
100, 8523–8540, 1995.
-
-
Burchard, H., and J.-M. Beckers, Non-uniform adaptive vertical grids in
one-dimensional numerical ocean models, Ocean Modelling, 6,
51–81, 2004.
-
-
Burchard, H., and K. Bolding, GETM – a general estuarine transport model.
Scientific documentation, Tech. Rep. EUR 20253 EN, European
Commission, 2002.
-
-
Burchard, H., and O. Petersen, Hybridisation between and
coordinates for improving the internal pressure gradient calculation in
marine models with steep bottom slopes, Int. J. Numer. Meth. Fluids,
25, 1003–1023, 1997.
-
-
Burchard, H., and H. Rennau, Comparative quantification of physically and
numerically induced mixing in ocean models, Ocean Modelling,
20, 293–311, 2008.
-
-
Burchard, H., K. Bolding, and M. R. Villarreal, Three-dimensional modelling of
estuarine turbidity maxima in a tidal estuary, Ocean Dynamics,
54, 250–265, 2004.
-
-
Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf,
Description of a flexible and extendable physical-biogeochemical model system
for the water column, J. Mar. Sys., 61, 180–211, 2006.
-
-
Casulli, V., and E. Cattani, Stability, accuracy and efficiency of a
semi-implicit method for three-dimensional shallow water flow,
Computers Math. Appl., 27, 99–112, 1994.
-
-
Chu, P. C., and C. Fan, Hydrostatic correction for reducing horizontal pressure
gradient errors in sigma coordinate models, J. Geophys. Res.,
108, 3206, doi: 10.1029/2002JC001,668, 2003.
-
-
Cox, M. D., A primitive equation, 3-dimensional model for the ocean,
Tech. Rep. 1, Geophysical Fluid Dynamics Laboratory, University of
Princeton, Princeton, N. J., 75 pp., 1984.
-
-
de Kok, J. M., A 3D finite difference model for the computation of near- and
far-field transport of suspended matter near a river mouth, Cont.
Shelf Res., 12, 625–642, 1992.
-
-
Deleersnijder, E., and K. G. Ruddick, A generalized vertical coordinate for
3D marine problems, Bulletin de la Société Royale des Sciences
de Liège, 61, 489–502, 1992.
-
-
Duwe, K., Modellierung der Brackwasserdynamik eines Tideästuars am
Beispiel der Unterelbe, Ph.D. thesis, Universität Hamburg, published
in: Hydromod Publ. No. 1, Wedel, Hamburg, 1988.
-
-
Espelid, T. O., J. Berntsen, and K. Barthel, Conservation of energy for schemes
applied to the propagation of shallow-water inertia-gravity waves in regions
with varying depth, Int. J. Numer. Meth. Engng, 49,
1521–1545, 2000.
-
-
Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, Bulk
parameterization of air-sea fluxes for Tropical Ocean-Global
Atmosphere Coupled-Ocean Atmosphere Response Experiment,
J. Geophys. Res., 101, 3747–3764, 1996.
-
-
Fofonoff, N. P., and R. C. Millard, Algorithms for the computation of
fundamental properties of seawater, Unesco technical papers in marine
sciences, 44, 1–53, 1983.
-
-
Freeman, N. G., A. M. Hale, and M. B. Danard, A modified sigma equations'
approach to the numerical modeling of Great Lakes hydrodynamics,
J. Geophys. Res., 77, 1050–1060, 1972.
-
-
Gerdes, R., A primitive equation ocean circulation model using a general
vertical coordinate transformation. 1. Description and testing of the
model, J. Geophys. Res., 98, 14,683–14,701, 1993.
-
-
Haidvogel, D. B., and A. Beckmann, Numerical Ocean Circulation
Modelling, Series on Environmental Science and Management, vol. 2,
318 pp. pp., Imperial College Press, London, 1999.
-
-
Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies,
Updated algorithms for density, potential temperature, conservative
temperature and freezing temperature of seawater, Journal of
Atmospheric and Oceanic Technology, submitted, 2005.
-
-
Jerlov, N. G., Optical oceanography, Elsevier, 1968.
-
-
Kagan, B. A., Ocean-atmosphere interaction and climate modelling,
Cambridge University Press, Cambridge, 1995.
-
-
Kantha, L. H., and C. A. Clayson, Small-scale processes in geophysical
fluid flows, International Geophysics Series, vol. 67, Academic
Press, 2000a.
-
-
Kantha, L. H., and C. A. Clayson, Numerical models of oceans and
oceanic processes, International Geophysics Series, vol. 66,
Academic Press, 2000b.
-
-
Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions,
Bound. Layer Meteor., 9, 91–112, 1975.
-
-
Krone, R. B., Flume studies of the transport of sediment in estuarial shoaling
processes, Tech. rep., Hydraulic Eng. Lab. US Army Corps of Eng.,
1962.
-
-
Lander, J. W. M., P. A. Blokland, and J. M. de Kok, The three-dimensional
shallow water model TRIWAQ with a flexible vertical grid definition,
Tech. Rep. RIKZ/OS-96.104x, SIMONA report 96-01, National Institute
for Coastal and Marine Management / RIKZ, The Hague, The Netherlands, 1994.
-
-
Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing : a
review and a model with nonlocal boundary layer parameterisation,
Rev. Geophys., 32, 363–403, 1994.
-
-
Leonard, B. P., The ULTIMATE conservative difference scheme applied to
unsteady one-dimensional advection, Comput. Meth. Appl. Mech. Eng.,
88, 17–74, 1991.
-
-
Leonard, B. P., M. K. MacVean, and A. P. Lock, The flux integral method for
multidimensional convection and diffusion, App. Math. Modelling,
19, 333–342, 1995.
-
-
Madala, R. V., and S. A. Piacsek, A semi-implicit numerical model for
baroclinic oceans, J. Computat. Phys., 23, 167–178, 1977.
-
-
Martinsen, E. A., and H. Engedahl, Implementation and testing of a lateral
boundary scheme as an open boundary condition in a barotropic ocean model,
Coastal Engineering, 11, 603–627, 1987.
-
-
Mathieu, P.-P., E. Deleersnijder, B. Cushman-Roisin, J.-M. Beckers, and
K. Bolding, The role of topography in small well-mixed bays, with application
to the lagoon of Mururoa, Cont. Shelf Res., 22,
1379–1395, 2002.
-
-
Mellor, G. L., T. Ezer, and L.-Y. Oey, The pressure gradient conundrum of sigma
coordinate ocean models, Journal of Atmospheric and Oceanic
Technology, 11, 1126–1134, 1994.
-
-
Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
New York, 1980.
-
-
Paulson, C. A., and J. J. Simpson, Irradiance measurements in the upper ocean,
J. Phys. Oceanogr., 7, 952–956, 1977.
-
-
Pedlosky, J., Geophysical fluid mechanics, 2. ed., Springer, New York,
1987.
-
-
Phillips, N. A., A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184–185, 1957.
-
-
Roe, P. L., Some contributions to the modeling of discontinuous flows,
Lect. Notes Appl. Math., 22, 163–193, 1985.
-
-
Shchepetkin, A. F., and J. C. McWilliams, A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res., 108, 10.1029/2001JC001,047,
2003.
-
-
Song, Y., A general pressure gradient formulation for ocean models. Part I:
Scheme design and diagnostic analysis, Monthly Weather Review,
126, 3213–3230, 1998.
-
-
Song, Y., and D. B. Haidvogel, A semi-implicit ocean circulation model using a
generalised topography-following coordinate, J. Computat. Phys.,
115, 228–244, 1994.
-
-
Stelling, G. S., and J. A. T. M. van Kester, On the approximation of horizontal
gradients in sigma co-ordinates for bathymetry with steep bottom slopes,
Int. J. Numer. Meth. Fluids, 18, 915–935, 1994.
-
-
Umlauf, L., H. Burchard, and K. Bolding, General Ocean Turbulence Model.
Source code documentation, Tech. Rep. 63, Baltic Sea Research
Institute Warnemünde, Warnemünde, Germany, 2005.
-
-
van Leer, B., Toward the ultimate conservative difference scheme. V: A second
order sequel to Godunov's method, J. Computat. Phys., 32,
101–136, 1979.
-
-
Zalezak, S. T., Fully multidimensional flux-corrected transport algorithms for
fluids, J. Computat. Phys., 31, 335–362, 1979.
-
-
Zalezak, S. T., A preliminary comparison of modern shock-capturing schemes:
linear advection, in Advances in computer methods for partial
differential equations, edited by R. V. aand R. S. Stepleman, pp. 15–22,
Publ. IMACS, 1987.
-
-
Zanke, U., Berechnung der Sinkgeschwindigkeiten von Sedimenten,
Mitteilungen des Franzius-Institutes, 46, 231–245, 1977.
-